Effect of varied levels of lysine supplemented with phytase on the growth, nutrient digestibility, phosphorus and nitrogen load of all male Nile tilapia, Oreochromis niloticus

Lawrence Nwanna


Phytate can chelate amino acids in plant feedstuffs and lysine is the first limiting amino acid in wheat meals that can replace fish meal in low cost and environmentally friendly fish feed production. The study evaluated the effects of different levels of lysine (Lys-HCl) and a dose of phytase (0.2 g kg-1 diet) in wheat meal based diets on the production of all male Nile tilapia. Six treatments (T1-T6) were used including, diet 1 the control with no supplement, and diets 2-6 supplemented with (0.2 g kg-1) phytase; 2.96 g Lys kg-1; 2.96 g Lys kg-1 + (0.2 g kg-1) phytase; 5.82 g Lys kg-1; and 5.82 g Lys kg-1 + (0.2 g kg-1) phytase, respectively. The diets were fed to the fish for 56 days. Fish grew well from the initial weight of 6.75g to weight gain of 25.1c, 27.4c, 32.3bc, 35.2ab, 37.4ab and 40.5a g in treatments 1-6, respectively, increasing the weight gain by between 73 and 84%. The trend showed increasing performance with increasing levels of dietary Lys. Treatments 4, 5 and 6 produced the same (P>0.05) growth performance which was higher (P<0.05) than the performance from fish in T1 and T2. Fish in T1, T2 and T3 had the same growth performance suggesting availability of same levels of Lys. Lysine reduced P, N and ash loadings by between 6.23 and 19.6%; 7.1 and 7.6% and 5.93-30.2%, respectively. The study demonstrated that phytase liberated more Lys in the diets which improved fish growth performance and nutrient utilization; and that when Lys is sufficient in the diets, supplementation of phytase may not be necessary.

Full Text:



Ahmed I. & Khan M.A. (2005 Dietary histidine requirement of fingerling Indian major carp,

Cirrhinus mrigala (Hamilton). Aquaculture Nutrition 11, 359–366.

Ahmed I. & Khan M.A. (2006) Dietary branched-chain amino acid valine, isoleucine and leucine requirements of fingerling Indian major carp, Cirrhinus mrigala (Hamilton). British Journal of Nutrition. 96, 450–460.

Akiyama T., Arai S., Murai T. & Nose T. (1985) Threonine, histidine and lysine requirements of chum salmon fry. Bulletin of Japanese Society for Fisheries Science. 51, 635–639

Bender D.A & Bender A.F. (2005) A Dictionary of Food and Nutrition. New York: Oxford University Press. ISBN 0198609612

Baruah K., Sahu N. P., Pal A. K. & Debnath D. (2004) Dietary phytase: an ideal approach for a cost effective and low polluting aqua feed. NAGA World Fish Centre

Quarterly. 27, 15–19.

Bureau D.P., Azevedo P.A., Tapia-Salazar M. & Cuzon G.( 2000) Pattern and cost of growth and nutrient deposition in fish and shrimp: potential implications and applications.

Avances en Nutrición Acuícola V. Memorias del V Simposium Internacional de

Nutrición Acuícola. 19, 111–140

Chen X.Q., Yang H.J., Li Xue-Fei. & Li-Xia Tian. (2016) Effects of graded levels of histidine on growth performance, digested enzymes activities, erythrocyte osmotic fragility and hypoxia-tolerance of juvenile grass carp Ctenopharyngodon idella Aquaculture 452, 388–394

Cho C.Y. & Bureau, D.P. (2001) A review of diet formulation strategies and feeding systems to reduce excretory and feed wastes in aquaculture. Aquaculture Research 32, 349–360.

Debnath D., Pal A.K. & Sahu N.P. (2005) Effect of dietary microbial phytase supplementation on growth and nutrient digestibility of Pangasius pangasius (Hamilton) fingerlings. Aquaculture Research 36(2),180–187.

Deng Y.P., Jiang W.D., Liu Y., Jiang J., Kuang S.Y., Tang L., Wu P., Zhang Y.A.,

Feng L. & Zhou X.Q. (2014) Differential growth performance, intestinal antioxidant

status and relative expression of Nrf2 and its target genes in young grass carp (Ctenopharyngodon idella) fed with graded levels of leucine. Aquaculture

, 66–73.

Di S.X., Li L., Hua W., Wen G., Shui W.Q. & Hui X. (2009) Study on isoleucine requirement for juvenile grass carp, Ctenopharyngodon idellus. Chinese Journal of Fisheries 33, 813–822.

Duncan D.B. (1955) Multiple F-test. Biometrics 11:1-42.

Eeckhout W. & De Paepe M. (1994) Total phosphorus, phytate phosphorus and phytase activity in plant feedstuffs. Animal Feed Science and Technology 47, 19

Furukawa A. & Tsukahara H. (1966) On the acid digestion method for the determination of chromic oxide as an index substance in the study of digestibility of fish feed. Bulletin of the Japanese Society for Scientific Fisheries. 32, 502-504

Gao Yu-Jie., Liu Yong-Jian., Chen Xian-Quan., Yang Hui-Jun., Li Xue-Fei. & Tian Li-Xia. (2016) Effects of graded levels of histidine on growth performance, digested enzymes activities, erythrocyte osmotic fragility and hypoxia-tolerance of juvenile grass carp Ctenopharyngodon idella. Aquaculture 452, 388–394

Jiang W.D., Deng Y.P., Liu Y., Qu B., Jiang J., Kuang S.Y., Tang L., Tang W.N., Wu P., Zhang Y.A., Zhou X.Q. & Feng L. (2015) Dietary leucine regulates the intestinal

immune status, immune-related signalling molecules and tight junction transcript

abundance in grass carp (Ctenopharyngodon idella). Aquaculture 444, 134–14

Khan M.A. & Abidi S.F. (2007) Dietary isoleucine requirement of fingerling Indian major carp, Labeo rohita (Hamilton). Aquaculture Nutrition 13, 424–430.

Koch J.F., Rawles, S.D., Webster C.D., Cummins V., Kobayashi R., Kenneth R., Gannam A.L., Twibell R.G. & Hyde N.M. (2016). Optimizing fish meal-free commercial diets for Nile tilapia, Oreochromis niloticus. Aquaculture 452, 357–366

Kronert U., Hoerstgen-Schwark G. & Langholtz H.J. (1989) Prospects of selecting for late maturity in tilapia (Oreochromis niloticus). Aquaculture 77, 113–121.

Kumar V., Sinha A.K., Makkar H.P.S. De-Boeck2 and G. & Becker K. (2012) Phytate and phytase in fish nutrition. Journal of Animal Physiology and Animal Nutrition 96, 335–364.

Li M. H., Manning B. B. & Robinson E. H. (2004). Summary of phytase studies for channel catfish. Mississippi Agricultural & Forestry Experimental Station Research report 23, 1–5

Liebert F. & Benkendorff K. (2007). Modelling of threonine and methionine requirements of Oreochromis niloticus due to principles of the diet dilution technique, Aquaculture Nutrition 13, 397–406

Liebert F. &, Portz L. (2007a) Nutrient utilization of Nile tilapia Oreochromis niloticus fed plant based low phosphorus diets supplemented with graded levels of different sources of microbial phytase. Aquaculture 248, 111–119

Liebert F. & Portz L. (2007b). Different sources of microbial phytase in plant based low phosphorus diets for Nile tilapia Oreochromis niloticus may provide different effects on phytate degradation. Aquaculture 267, 292-299.

Longe, J.L (2005). The Gale Encyclopedia of Alternative Medicine. Detroit: Thomson Gale ISBN 0787674249

Lopez, H.W., Leenhardt, F., Coudray, C., Remesy, C., 2002. Minerals and phytic acid interactions: is it a real problem for human nutrition? International Journal of Food Science and Technology. 37, 727–739.

Lott J.N.A., Ockenden I., Raboy V. & Batten G.D. (2000) Phytic acid and phosphorus in crop seeds and fruits: a global estimate. Seed Science Research 10, 11–33

Mambrini M., Roem A.J., Cravedi J.P., Lalles J.P. & Kaushik S.J. (1999) Effects of replacing fishmeal with soy protein concentrate and of DL-methionine supplementation in high-energy, extruded diets on the growth and nutrient utilization of rainbow trout, Oncorhynchus mykiss. Journal of Animal Science 77, 2990–2999.

Mueller-Belecke A. & Hoerstgen-Schwark G. (2000) Performance testing of homozygous lines in Oreochromis niloticus. Aquaculture, 184, 67–76.

Mukhopadhyay N. & Ray A. K. (2001) Effects of amino acid supplementation on the nutritive quality of fermented linseed meal protein in the diets for rohu, Labeo rohita, fingerlings. Journal of Applied Ichthyology 17 (5), 220-226

Murthy H.S. & Varghese T.J. (1995) Arginine and histidine requirements of the Indian major

carp, Labeo rohita (Hamilton). Aquaculture Nutrition 1, 235–239

Neto R.M. & Ostrensky A. (2015) Evaluation of commercial feeds intended for the Brazilian

production of Nile tilapia (Oreochromis niloticus L.): nutritional and environmental

implications. Aquaculture Nutrition 21, 311–320

Naumann C. & Bassler R. (1976–1997) VDLUFA–Methodenbuch, Vol. III: Die chemische Untersuchung von Futtermitteln. Neumann-Neudamm, Darmstadt.

NRC, (National Research Council). (2011) Nutrient Requirements of Fish. National Academy Press, Washington, D.C., USA.

Nwanna, L. C. ( 2007) Effect of dietary phytase on growth, enzyme activities and Phosphorus load of Nile tilapia (Oreochromis niloticus). Journal of Engineering and Applied Sciences 2, 972–976.

Nwanna L.C. & Schwarz F.J. (2007). Effect of supplemental phytase on growth, phosphorus digestibility and bone mineralization of common carp (Cyprinus carpio L). Aquaculture Research, 38, 1037-1044.

Nwanna L. C., Eisenreich R. & Schwarz F. J. ( 2007) Effect of wet-incubation of dietary plant feedstuffs with phytases on growth and mineral digestibility by common

carp (Cyprinus carpio L). Aquaculture 271, 461–468.

Nwanna L.C., Lemme A., Metwally A. & Schwarz F. J. (2012) Response of common carp (Cyprinus carpio L.) to supplemental DL-methionine and different feeding strategies. Aquaculture 356–357, 365–370

Oishi César-Augusto., NWANNA L.C. & Manoel P.F. ( 2010) Optimum dietary protein requirement for Amazonian Tambaqui, Colossoma macropomum Cuvier, 1818, fed fish meal free diets ACTA AMAZONICA 40(4), 757-762

Papatryphon E. & Soares J. H. Jr. (2001) The effect of phytase on apparent digestibility of four practical plant feedstuffs fed to striped bass Morone saxatilis. Aquaculture Nutrition 7, 161–167.

Plumb J.A. (1999) Health Maintenance and Principal Microbian Diseases of Culture Cultured Fishes. Iowa State University Press,Ames, IA, pp. 108–126.

Santiago C.B. & Lovell R.T. (1988) Amino acids requirement for growth of Nile tilapia. Journal of Nutrition 118, 1540–1546.

Ren M, H., Habte-Tsion M., Lui B., Miao L., Ge X., Hie J. & Zhou Q. (2015). Dietary Isoleucine requirement of juvenile blunt snout bream Megalobrama amblycephala

Aquaculture Nutrition 1,1-9

Rostagno H.S., Pupa J.M.R. & Pack M. (1995) Diet formulation for broilers based on total

versus digestible amino acids. Journal of Applied Poultry Resources 4, 293–299.

Sajjadi M. & Carter C. G. (2004). Dietary phytase supplementation and the utilisation of phosphorus by Atlantic salmon (Salmo salar, L.) fed a canola-meal based diet.

Aquaculture 240, 417–431.

Sardar P., Abid M., Randhawa H.S. & Prabhakar S.K. (2009) Effect of dietary lysine and methionine supplementation on growth, nutrient utilization, carcass compositions and haematobiochemical status in Indian Major Carp, Rohu (Labeo rohita H.) fed soy protein-based diet. Aquaculture Nutrition 15, 339–346.

SAS. (1998) SAS/STAT Software. User’s guide Release 6.03. SAS Institute, Cary, NC, USA, p.956

Schneider O., Amirkolaie A.K., Vera-Cartas J., Eding E.H., Schrama J.W. & Verreth, J.A.J. (2004) Digestibility, faeces recovery, and related carbon, nitrogen, and phosphorus

balances of five feed ingredients evaluated as fishmeal alternatives in Nile tilapia,

Oreochromis niloticus. Aquaculture Research 35, 1370–1379.

Shearer K.D. (2000) Experimental design, statistical analysis and modeling of dietary nutrient requirement studies for fish: a critical review. Aquaculture Nutrition 6, 91–102

Storebakken T., Shearer K.D., Baeverfjord G., Nielsen B.G., Asgard T., Scott T. & De Laporte A. (2000) Digestibility of macronutrients, energy and amino acids, absorption of elements and absence of intestinal enteritis in Atlantic salmon, Salmo salar, fed diets with wheat gluten. Aquaculture 184, 115–132.

Sugiura SH., Gabaudan J., Dong F.M & Hardy R.W. (2001). Dietary microbial phytase supplementation and the utilization of phosphorus, trace minerals and protein by rainbow trout Oncorhynchus mykiss (Walbaum) fed soybean meal-based diets. Aquaculture Research 32, 583–9

Takeuchi T. (1988) Fish nutrition and mariculture. In: Laboratory Work: Chemical Evaluation of Dietary Nutrients (Watanabe, T.(ed.), pp. 179–233. Department of Aquatic Biosciences, Tokyo University of Fisheries, Tokyo.

Tacon A.G.J. (1990) Essential nutrients – proteins and amino acids. In: Standard Methods for the Nutrition of Farmed Fish and Shrimp (Tacon, A.G.J. eds), pp. 2–20. Argent Laboratories Press, Redmond, WA, USA.

Vielma J., Maekinen T., Ekholm P. & Koskela J. (2000) Influence of dietary soy and phytase levels on performance and body composition of large rainbow trout (Oncorhynchus mykiss) and algal availability of P load. Aquaculture 183, 349–362

Wada T. & Lott J.N.A. (1997) Light and electron microscopic and energy dispersive X-ray microanalysis studies of globoids in protein bodies of embryo tissues and the aleurone layer of rice (Oryza sativa L.) grains. Canadian Journal of Botany 75, 1137–1147

Zehra S. & Khan M.A. (2013) Dietary isoleucine requirement of fingerling Catla catla. (Hamilton), based on growth, protein productive value, isoleucine retention efficiency and carcass composition. Aquaculture International 21, 1243–1259

Zehra S. & Khan M.A. (2014) Dietary valine requirement of fingerling Catla catla. Journal of Applied Ichthyology 26, 232–251

Zhao B., Feng L., Liu Y., Kuang S.Y., Tang L., Jiang J., Hu K., JiangW.D., Li S.H., Zhou X.Q. (2012) Effects of dietary histidine levels on growth performance, body composition and intestinal enzymes activities of juvenile Jian carp (Cyprinus carpio var. Jian). Aquaculture Nutrition 18, 220–232